Probability Seminars
Cutoff for the mean-field zero-range process
With Justin Salez (Paris-Dauphine)
Cutoff for the mean-field zero-range process
We consider the zero-range process with arbitrary bounded monotone rates on the complete graph, in the regime where the number of sites diverges while the density of particles per site converges. We determine the asymptotics of the mixing time from any initial configuration, and establish the cutoff phenomenon. The intuitive picture is that the system separates into a slowly evolving solid phase and a quickly relaxing liquid phase: as time passes, the solid phase dissolves into the liquid phase, and the mixing time is essentially the time at which the system becomes completely liquid. Joint work with Jonathan Hermon.
- Speaker: Justin Salez (Paris-Dauphine)
- Tuesday 29 October 2019, 15:15–16:15
- Venue: MR12, CMS, Wilberforce Road, Cambridge, CB3 0WB.
- Series: Probability; organiser: Perla Sousi.