IEEE Distinguished Lecturer series – High Resolution Optical and SAR Satellite Image Processing for Disaster Management using Hierarchical MRFs
Speaker: Prof. Josiane Zerubia, INRIA, France
The Cambridge University Engineering Dept is delighted to announce that at 3pm on Friday 2nd December in LR4, we will have a talk that is part of the IEEE Distinguished Lecturer series. Details are as follows and also on http://talks.cam.ac.uk/talk/index/69356 (includes Prof Zerubia’s bio and photo)
High Resolution Optical and SAR Satellite Image Processing for Disaster Management using Hierarchical MRFs
Prof. Josiane Zerubia, IEEE Distinguished Lecturer, INRIA, France
Abstract: In this talk, we describe a novel classification approach for multi-resolution, multi-sensor (optical and synthetic aperture radar (SAR)) and/or multi-band images. This challenging image processing problem is of great importance for various remote sensing monitoring applications and has been scarcely addressed so far. To deal with this classification problem, we propose a two-step explicit statistical model. We first design a model for the multi-variate joint class-conditional statistics of the co-registered input images at each resolution. We then plug the estimated joint probability density functions into a hierarchical Markovian model based on a quad-tree structure, where each tree-scale corresponds to the different input image resolutions and to the corresponding multi-scale decimated wavelet transforms, thus preventing a strong re-sampling of the initial images. To obtain the classification map, we resort to an estimator of the marginal posterior mode. We integrate a prior update in this model in order to improve the robustness of the proposed classifier against noise and speckle. The resulting classification performance is illustrated on several remote sensing multi-resolution datasets including very high resolution and multi-sensor images acquired by COSMO -SkyMed and GeoEye-1 satellites.
Tea and cake will be served in LR4 after the lecture for all who attend. See you there.