Short course: Quantum computing – Theory and practice
This short course is organised by the CCIMI and open to all. Lectures run 14:00-16:30, with a 15 minute break in the middle, Tuesday 1st – Thursday 3rd May.
Instructor: Lior Horesh, IBM
In this short course, fundamental theoretical concepts of quantum computation and quantum information will be covered. In addition, hands-on experimentation of quantum algorithms will be demonstrated on actual quantum devices. Special consideration will be given to realization of limitations of current, non-fault tolerant quantum systems, as well as means to mitigate them when possible.
Specifically, the short course will address the following topics:
Lecture 1 – a. Introduction and overview – historical review, quantum bits, quantum computation, quantum algorithms, quantum information, models of computation, complexity analysis. b. Algebraic preliminaries – Pauli matrices, adjoint, Hermitians and unitary operators, tensor product spaces, commutative and anti-commutative relations. c. Brief introduction to quantum mechanics – the postulates of quantum mechanics (state space, evolution, quantum measurement and composite systems).
Lecture 2 – a. The qubit – Bloch sphere, basis state, superposition, entanglement (Bell state example). b. Quantum computation – single qubit and controlled operations, universality, quantum circuits (super-dense coding and teleporation examples). c. Hands-on experimentation of quantum algorithms on a quantum system via the IBM (Quantum Experience http://research.ibm.com/ibm-q/).
Lecture 3 – a. Quantum algorithms: Deutsch, Deutsch Josza, Simon’s, quantum Fourier transform, quantum phase estimation, Grover’s search algorithm . b. Quantum noise and quantum operations: gate fidelities, amplitude leak, phase decoherence, algorithmic design considerations (Variational Quantum Eigensolver example)
For more information please see http://talks.cam.ac.uk/show/index/86491