Simultaneous multiple change-point and factor analysis for high-dimensional time series
With Haeran Cho (Bristol)
Simultaneous multiple change-point and factor analysis for high-dimensional time series
We propose the first comprehensive treatment of high-dimensional time series factor models with multiple change-points in their second-order structure. We operate under the most flexible definition of piecewise stationarity, and estimate the number and locations of change-points consistently as well as identifying whether they originate in the common or idiosyncratic components. Through the use of wavelets, we transform the problem of change-point detection in the second-order structure of a high-dimensional time series, into the (relatively easier) problem of change-point detection in the means of high-dimensional panel data. Our methodology circumvents the difficult issue of the accurate estimation of the true number of factors by adopting a screening procedure. In extensive simulation studies, we show that factor analysis prior to change-point detection improves the detectability of change-points, and identify and describe an interesting ‘spillover’ effect in which substantial breaks in the idiosyncratic components get, naturally enough, identified as change-points in the common components, which prompts us to regard the corresponding change-points as also acting as a form of ‘factors’. We introduce a simple graphical tool for visualising the piecewise stationary evolution of the factor structure over time. Our methodology is implemented in the R package factorcpt, available from CRAN .
Joint work with Matteo Barigozzi and Piotr Fryzlewicz (LSE).
- Speaker: Haeran Cho (Bristol)
- Friday 10 February 2017, 16:00–17:00
- Venue: MR12, Centre for Mathematical Sciences, Wilberforce Road, Cambridge..
- Series: Statistics; organiser: Quentin Berthet.