The KTH Royal Institute of Technology welcomes applications for the below positions related to research on regularization for tomographic reconstruction, one on PET/SPECT and the other on combining deep learning with sparsity promoting regularization;
Postdoctor in PET/SPECT Image Reconstruction (S-2017-1166)
Deadline: December 1, 2017
Brief description:
The position includes research & development of algorithms for PET and SPECT image reconstruction. Work is closely related to on-going research on (a) multi-channel regularization for PET/CT and SPECT/CT imaging, (b) joint reconstruction and image matching for spatio-temporal pulmonary PET/CT and cardiac SPECT/CT imaging, and (c) task-based reconstruction by iterative deep neural networks. An important part is to integrate routines for forward and backprojection from reconstruction packages like STIR and EMrecon for PET and NiftyRec for SPECT with ODL (http://github.com/odlgroup/odl), our Python based framework for reconstruction. Part of the research may include industrial (Elekta and Philips Healthcare) and clinical (Karolinska University Hospital) collaboration.
Announcement & instructions:
http://www.kth.se/en/om/work-at-kth/lediga-jobb/what:job/jobID:158920/type:job/where:4/apply:1
Postdoctor in Image Reconstruction/Deep Dictionary Learning (S-2017-1165)
Deadline: December 1, 2017
Brief description:
Announcement & instructions:
http://www.kth.se/en/om/work-at-kth/lediga-jobb/what:job/jobID:158923/type:job/where:4/apply:1